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Abstract

In this paper a fast algorithm for computing the capacitance of a complicated
3-D geometry of ideal conductors in a uniform dielectric is described and its per-
formance in the capacitance extractor FastCap is examined. The algorithm is an
acceleration of the boundary-element technique for solving the integral equation
associated with the multiconductor capacitance extraction problem. Boundary-
element methods become slow when a large number of elements are used because
they lead to dense matrix problems which are typically solved with some form of
Gaussian elimination. This implies that the computation grows as n3, where n is
the number of panels or tiles needed to accurately discretize the conductor surface
charges. In this paper we present a generalized conjugate residual iterative algo-
rithm with a multipole approximation to compute the iterates. This combination
reduces the complexity so that accurate multiconductor capacitance calculations
grow nearly as nm, where m is the number of conductors. Performance compar-
isons on integrated circuit bus crossing problems show that for problems with as
few as twelve conductors the multipole accelerated boundary element method can
be nearly 500 times faster than Gaussian elimination based algorithms, and five to
ten times faster than the iterative method alone, depending on required accuracy.

1 Introduction

In the design of high performance integrated circuits and integrated circuit packaging,
there are many cases where accurate estimates of the capacitances of complicated three

0This work was supported by the Defense Advanced Research Projects Agency contract N00014-87-
K-825, the National Science Foundation and grants from I.B.M. and Analog Devices.
The authors are with the Research Laboratory of Electronics, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, U.S.A.

1



2 2 THE INTEGRAL EQUATION APPROACH

dimensional structures are important for determining final circuit speeds or functionality.
Two examples of complicated three-dimensional structures for which capacitance strongly
affects performance are dynamic memory cells, and the chip carriers commonly used in
high density packaging. In these problems, capacitance extraction is made tractable by
assuming the conductors are ideal and are embedded in a piecewise-constant dielectric
medium. Then to compute the capacitances, Laplace’s equation is solved numerically
over the charge free region with the conductors providing boundary conditions.

Although there are a variety of numerical methods that can be used to solve Laplace’s
equation, for three-dimensional capacitance calculations the usual approach is to apply
a boundary-element technique to the integral form of Laplace’s equation [14, 12, 11].
In these approaches the surfaces or edges of all the conductors are broken into small
panels or tiles and it is assumed that on each panel i, a charge, qi, is uniformly or piece-
wise linearly distributed. The potential on each panel is then computed by summing
the contributions to the potential from all the panels using Laplace’s equation Green’s
functions. In this way, a matrix of potential coefficients, P , relating the set of n panel
potentials and the set of n panel charges is constructed. The resulting n × n system of
equations must be solved to compute capacitances. Typically, Gaussian elimination or
Cholesky factorization is used to solve the system of equations, in which case the number
of operations is order n3. Clearly, this approach becomes computationally intractable if
the number of panels exceeds several hundred, and this limits the size of the problem
that can be analyzed to one with a few conductors.

An approach to reducing the computation time that is particularly effective for
computing the diagonal terms of the capacitance matrix, also referred to as the self-
capacitances, is to ignore small contributions to the potential coefficient matrix due to
pairs of panels which are separated by large distances [1]. In this paper we present a
similar approach, which approximates small potential coefficients with multipole expan-
sions. We show that this approach produces an algorithm which accurately computes
both the self and coupling capacitances, and has a computational complexity of nearly
mn, where m is the number of conductors. Our algorithm, which is really the pasting
together of three well-known algorithms [13], is presented in three sections. To begin, in
the next section one of the standard integral equation approaches is briefly described, and
it is shown that the algorithm requires the solution of an n× n dense nearly symmetric
matrix. Then, in Section 3, a generalized conjugate residual algorithm is described, and
is shown to reduce the complexity of the calculation to roughly order mn2. In Section 4,
it is shown that the major computation of the conjugate residual algorithm, evaluation
of a potential field from a charge distribution, can be computed in order n time using a
multipole algorithm. In Section 5, we describe some experimental results and in Section 6
we present our conclusions and acknowledgments. Finally, some implementation details
are presented in an appendix.

2 The Integral Equation Approach

Consider a system of m ideal conductors embedded in a uniform lossless dielectric
medium. For such a system, the relation between the m conductor potentials, denoted
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by p̂ ∈ ℜm, and the m total charges on each conductor, denoted by q̂ ∈ ℜm, is given by
q̂ = Cp̂, where C ∈ ℜm×m is referred to as the capacitance matrix. The jth column of C
can be calculated by solving for the total charges on each of the conductors when the jth

conductor is at unit potential, and all the other conductors are at zero potential. Then
the charge on conductor i, q̂i, is equal to Cij.

To find the conductor charge distributions given the conductor potentials, it is nec-
essary to solve the first-kind integral equation

ψ(x) =
∫

surfaces
G(x, x′)σ(x′)da′ (1)

for the surface charge density σ, where x, x′ ∈ ℜ3 and are positions in 3-space, da′ is
the incremental surface area, ψ is the surface potential and is known, and G(x, x′) is the
Green’s function, which is 1

‖x−x′‖
in free space 1. Here, ‖x − x′‖ denotes the Euclidean

distance between x and x′. Given the surface charge density σ, the total charge on the
ith conductor, Qi, can be computed from

Qi =
∫

ith conductor′s surface
σ(x′)da′. (2)

There are a variety of approaches for numerically computing the conductor surface
charge density given the conductor potentials, some of which involve reformulating (1)
as a partial differential equation, and using finite difference methods in three space di-
mensions [16, 4]. We will focus on the boundary-element methods applied directly to
solving (1) [14, 12, 11], as they have proved to be efficient and accurate when applied
to problems with ideal conductors in a uniform dielectric medium. These methods are
also referred to as panel methods [6], or the method of moments [5], in other application
domains. This class of method exploits the fact that the charge is restricted to the surface
of the conductors, and rather than discretizing all of free space, just the surface charge
on the conductors is discretized. The surface potential, which is known, is related to
the discretized surface charge through integrals of Green’s functions. The so-constructed
system can then be solved for the discretized surface charge.

The simplest commonly used approach to constructing a system of equations that
can be solved for the discretized surface charge is the “point-matching” or collocation
method. In this method, the surfaces of m conductors in free space are discretized into a
total of n 2-dimensional panels (See for example Fig. 5b). For each panel k, an equation
is written that relates the potential at the center of that kth panel to the sum of the
contributions to that potential from the charge distribution on all n panels. That is,

pk =
n
∑

l=1

∫

panell

σl(x
′)

‖x′ − xk‖
da′, (3)

where xk is the center of panel k, x′ is the position on the surface of panel l, pk is the
potential at the center of panel k, and σl(x

′) is the surface charge density on the lth panel.
The integral in (3) is the free space Green’s function multiplied by the charge density

1Note that the scale factor 1/4πǫ0 can be ignored here, and reintroduced later to give the results in
units of farads.
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and integrated over the surface of the lth panel. Note that as the distance between panel
k and panel l becomes large compared to the surface area of panel l, the integral reduces
to ql

‖xl−xk‖
where xl is the center of the lth panel and ql is the total charge on panel l.

In a first-order collocation method (higher order methods are rarely used), it is as-
sumed that the surface charge density on the panel is constant [12]. In that case (3) can
be simplified to

pk =
n
∑

l=1

ql
al

∫

panell

1

‖x′ − xk‖
da′, (4)

where al is the surface area of panel l. When applied to the collection of n panels, a
dense linear system results,

Pq = p (5)

where P ∈ ℜn×n; q, p ∈ ℜn and

Pkl =
1

al

∫

panell

1

‖x′ − xk‖
da′. (6)

Note that q and p are the vectors of panel charges and potentials rather than the conductor
charge and potential vectors, q̂ and p̂ mentioned above. The dense linear system of (5)
can be solved, typically by some form of Gaussian elimination, to compute panel charges
from a given set of panel potentials. To compute the jth column of the capacitance
matrix, (5) must be solved for q, given a p vector where pk = 1 if panel k is on the
jth conductor, and pk = 0 otherwise. Then the ijth term of the capacitance matrix is
computed by summing all the panel charges on the ith conductor, that is

Cij =
∑

k∈conductori

qk. (7)

3 Solution by the Generalized Conjugate Residual

Method

In order to solve for a complete m×m capacitance matrix, the n×n matrix of potential
coefficients, P , must be factored once, usually into P = LU , where L and U are strictly
lower and upper triangular respectively, and this requires order n3 operations. Then, as
there are m conductors, the factored system must solved m times with m different right-
hand sides, and this requires order mn2 operations. Since n is the total number of panels
into which the conductor surfaces are discretized, m is necessarily much smaller than n.
Therefore, the n3 time for factorization dominates for large problems, but factorization
can be avoided by using iterative methods to solve the m charge distribution problems.

From the definition P given by (6), it is clear that P is a positive nonsymmetric
matrix and that the largest element in each row is the diagonal, though the matrix is
not diagonally dominant. Therefore, conjugate-descent methods like the generalized
conjugate residual (GCR) algorithm [15] given below in Algorithm 1, are likely to be
more effective than the more familiar Gauss-Seidel or Gauss-Jacobi style algorithms.
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Algorithm 1: GCR algorithm for solving Pq = p

/* The Setup. Note the uiter’s are search directions and */
/* w is the residual. */
w = p; q = 0.

/* GCR Loop. */
For iter = 0, 1, 2, ... until converged {
uiter = w.
puiter = Pw.
/* P-orthogonalize puiter with respect to pum, m < iter. */
For m = 0 to iter {
β = puiter Tpum.
uiter = uiter − βum.
puiter = puiter − βpum.

}
/* Normalize the direction. */
puiter = puiter/‖puiter‖.
uiter = uiter/‖puiter‖.
/* Update the charge and the residual. */
α = wTpuiter.
q = q + αuiter.
w = w − αpuiter.

}

4 Accelerating the Matrix-Vector Product

As can be seen from examining Algorithm 1, assuming the number of iterations required
is small, the major costs of the GCR algorithm are initially forming the dense matrix P ,
and in each iteration computing the matrix-vector product Pw, both of which require
order n2 operations. Computing the capacitance matrix with Algorithm 1 is therefore at
least order mn2, and may be higher if the number of GCR iterations increases with the
problem size. Note that if the number of panels per conductor is low, Algorithm 1 may
not be much more efficient than using direct factorization.

An approach that avoids forming most of P , and reduces the cost of computing
the matrix-vector product Pw, can be derived by recalling that if w is thought of as
representing charges distributed on panels, then Pw is a potential due to that charge
distribution. In addition, if the distance between the centers of panel i and panel j is
large compared to the panel sizes, then Pij ≈ 1

‖xi−xj‖
. That is, for widely separated

panels, the jth panel charge has the same effect on the potential at xi as would a point
charge of value wj located at panel j’s center.

To see how these observations can help simplify the computation of Pw, consider
the situation (depicted in 2-D for simplicity) in Figs. 1 and 2. In either figure, the
obvious approach to determining the potential at the n1 evaluation points from the n2
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Figure 1: The evaluation point potentials are approximated with a multipole expansion.

Figure 2: The evaluation point potentials are approximated with a local expansion.
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point-charges involves n1 ∗ n2 operations; at each of the n1 evaluation points one simply
sums the contribution to the potential from n2 charges. An accurate approximation for
the potentials for the case of Fig. 1 can be computed in many fewer operations using
multipole expansions, which exploit the fact that r >> R (defined in Fig. 1). That is, the
details of the distribution of the charges in the inner circle of radius R in Fig. 1 do not
strongly effect the potentials at the evaluation points outside the outer circle of radius
r. It is also possible to compute an accurate approximation for the potentials at the
evaluation points in the inner circle of Fig. 2 in many fewer than n1 ∗n2 operations using
local expansions, which again exploit the fact that r >> R (as in Fig. 2). In this second
case, what can be ignored is the details of the evaluation point distribution.

4.1 Multipole Expansions

Figure 3: The charges are replaced by the first multipole expansion coefficient.

A rough approximation to the effect of the n2 charges in the inner circle in Fig. 1 can
be derived by replacing those charges with a single charge equal to their sum, placed at the
inner circle’s center (See Fig. 3). The number of operations to compute the n1 potentials
given this simplification is then n2+n1, n2 operations to compute the sum of charges, and
n1 operations to calculate the potentials at the evaluation points. Note that the accuracy
of this approximation improves as the separation r between the nearest evaluation point
and the center of the inner circle containing the charges increases compared to the inner
circle’s radius.

In the simplified approach above, the potential due to the charges in Fig. 1 is approx-
imated by

∑n2

i=1 qi
rj

, (8)

where rj is the distance between the center of the charge circle and the jth evaluation
point. Such an approximation is referred to as a monopole approximation, and is the first
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term in the general multipole approximation for charge distributions. In general, the true
potential, ψ, due to point charges inside a sphere at a location outside the radius of the
sphere can be approximated arbitrarily accurately by a truncated multipole expansion,

ψ(rj, θj , φj) ≈
l
∑

n=0

n
∑

m=−n

Mm
n

rn+1
j

Y m
n (θj , φj), (9)

where l is the order of the expansion, rj , θj and φj are the spherical coordinates of
the jth evaluation location referenced to the sphere’s center. The Y m

n (θj , φj) factors are
called spherical harmonics [2, 8] and the Mm

n are complex weights known as the multipole
coefficients. The coefficients are related to the charges by

Mm
n =

n2
∑

i=1

qiρ
n
i Y

−m
n (αi, βi), (10)

where ρi, αi, and βi are the spherical coordinates of the ith charge relative to the sphere’s
center. It has been shown that the truncated multipole expansion error is bounded by

|ψ(rj, θj , φj) −
l
∑

n=0

n
∑

m=−n

Mm
n

rn+1
j

Y m
n (θj , φj)| < K1

(

R

rj

)l+1

≤ K1

(

R

r

)l+1

(11)

where K1 is independent of l, and r and R are as in Figs. 1 and 3, the distance to
the nearest evaluation point and the radius of the sphere of charge, respectively [2]. If
the nearest evaluation point is well outside the sphere, then (11) implies that all the
evaluation point potentials can be accurately computed using just a few terms of the
multipole expansion.

4.2 Local Expansions

Multipole expansions cannot be used to simplify calculating the potentials for the eval-
uation points in the smaller circle of Fig. 2, as the charges are too widely distributed.
However, it is still possible to compute approximate potentials at the n1 evaluation points
due to the n2 charges in n1 + n2 operations. To see this, consider that the potential at
any of the n1 evaluation points in the smaller circle is roughly the same as the potential
evaluated at the center of the circle. Thus the potential at an evaluation point can be
approximated by

n2
∑

i=1

qi
ρi
, (12)

where ρi is the distance from the ith charge to the center of the circle containing the
evaluation points. Estimating the potentials at the n1 evaluation points therefore requires
n2 operations to compute the potential at the circle’s center by (12), and n1 additional
operations to copy that result to the n1 evaluation points. Note that the approximation
improves as the separation between the charges and the circle’s center increases compared
to the circle’s radius.

Just as in the multipole case, it is possible to improve the accuracy of the above local
expansion by including the effect of the distance between an evaluation point and the
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enclosing sphere’s center. In general, the truncated local expansion approximation for
the exact potential in a sphere due to charges outside the radius of the sphere is given
by

ψ(rj , θj, φj) ≈
l
∑

n=0

n
∑

m=−n

Lm
n Y

m
n (θj , φj)r

n
j , (13)

where l is the order of the expansion, rj, θj and φj are the spherical coordinates of the
jth evaluation location with respect to the sphere’s center, and the  Lm

n factors are the
complex local expansion coefficients. For a set of n2 charges outside the sphere, the local
expansion coefficients are given by

Lm
n =

n2
∑

i=1

qi
ρn+1
i

Y −m
n (αi, βi), (14)

where ρi, αi, and βi are the spherical coordinates of the ith charge relative to the center
of the sphere containing the evaluation points. As for the multipole expansion, the error
introduced by the local expansion is related to a ratio of distances,

|ψ(rj, θj, φj) −
l
∑

n=0

n
∑

m=−n

Lm
n Y

m
n (θj , φj)r

n
j | < K2

(

rj
r

)l+1

≤ K2

(

R

r

)l+1

(15)

where K2 is independent of l, and r and R are as in Fig. 2, the distance to the nearest
charge location and the radius of the sphere of evaluation points, respectively [2]. There-
fore, if the charges are well outside the sphere then the potential inside the sphere can
be accurately computed using just a few terms of the local expansion.

4.3 The Multipole Algorithm

Low order multipole and local expansions can be used to accurately compute the poten-
tials at n evaluation points due to n panel charges in order n operations, even for general
evaluation point and charge distributions, but the multipole and local expansions have
to be applied carefully, both to ensure adequate separation, and to avoid excess calcula-
tion. Below we give a multipole algorithm for computing the potentials at the n panel
center points due to n panel charges. The algorithm requires O(n) operations, and was
originally presented in [2] with variants in [13, 9, 17]. The algorithm is reproduced here,
modified to fit the boundary-element calculations.

To begin, the smallest cube that contains the entire collection of panels for the problem
of interest is determined. This cube will be referred to as the level 0, or root, cube. Then,
the volume of the cube is broken into eight equally sized child cubes, referred to as level
1 cubes, and each has the level 0 cube as its parent. The panels are divided among the
child cubes by associating a panel with a cube if the panel’s center point is contained
in the cube. Each of the level 1 cubes is then subdivided into eight level 2 child cubes
and the panels are again distributed based on their center point locations. The result
is a collection of 64 level 2 cubes and a 64-way partition of the panels. This process is
repeated to produce L levels of cubes, and L partitions of panels starting with an 8-way
partition and ending with an 8L-way partition. The number of levels, L, is chosen so that
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the maximum number of panels in a finest, or Lth, level cube is less than some threshold
(four is a typical default).

The following terms are used to concisely describe the multipole algorithm.

Definition 1 Evaluation Points of a Cube: The center points of the panels associated
with the cube.

Definition 2 Nearest Neighbors of a Cube: Those cubes which have a corner in common
with the given cube.

Definition 3 Second Nearest Neighbors of a Cube: Those cubes which are not nearest
neighbors but have a corner in common with a nearest neighbor.

Note that there are at most 124 nearest and second nearest neighbors of a cube, excluding
the cube itself.

Definition 4 Interaction Cubes of a given cube: Those cubes which are either the second
nearest neighbors of the given cube’s parent, or are children of the given cube’s parent’s
nearest neighbors, excluding nearest or second nearest neighbors of the given cube.

There are a maximum of 189 interaction cubes for a given cube, roughly half are from
a level one coarser than the level of the given cube, the rest are on the same level. The
interaction cubes have two important properties. When combined with the given cube’s
nearest and second nearest neighbors, they entirely cover the same volume as the given
cube’s parent and the parent’s nearest and second nearest neighbors. Also, the interaction
cubes are such that the distance between a point in the given cube and a point in the
interaction cube is more than half the distance between the centers of the given and
interaction cubes. This latter property guarantees that when multipole expansions are
used to approximate the effects of interaction cubes, and when these multipole expansions
are gathered together in a local expansion for the given cube, the resulting approximation
will converge rapidly with increasing expansion order.

Remark As the charges in this problem are not point charges, but are distributed on
panels, it is necessary to ensure that each panel is entirely contained in a finest level cube
in order to ensure that evaluation points in a cube are well separated from panel charges
in an interaction cube. This may require breaking a panel up into several panels, but as
the multipole algorithm grows linearly with the number of panels, this is not a significant
computational burden.

The structure of the multipole algorithm for computing the n panel potentials from
n panel charges is given below. The formulas for various transformations and shifts
required are given in the appendix. A three letter key for each transformation is given
to simplify finding the corresponding appendix formula.
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Algorithm 2: Multipole Algorithm for Computing Pw

/*
THE DIRECT PASS: The potentials due to nearby charges are computed
directly.
*/
For each cube of the 8L cubes on the finest level {

/* Map panel charge distributions to potentials (Q2P). */
Compute the potential at all the evaluation points in the cube
due to the charge distributions on all the panels in the cube, in
the cube’s nearest neighbors, and in the cube’s second nearest
neighbors.

}

/*
THE UPWARD PASS: Computes a multipole expansion for every cube
at every level. The computation is order n because the multipole
expansion for any cube at a level coarser than the finest level is
computed by combining the multipole expansions of its children.
*/
For each cube of the 8L cubes on the finest level {

/* Map panel charges to multipole coefficients (Q2M). */
Construct a multipole expansion for the charge distributions on all the
panels in the cube, about the cube’s center.

}

For each level i = L− 1 to 2 {
For each cube of the 8i cubes on level i {

For each of the 8 children of the cube {
/* Map multipole coefficients to multipole coefficients (M2M). */
Shift the multipole expansion about the child cube’s center
to a multipole expansion about the cube’s center and add it
to the multipole expansion for the cube.

}
}

}

/*
THE DOWNWARD PASS: Computes a local expansion for every cube.
The local expansion includes the effects of all panel charges not in the
cube or its nearest and second nearest neighbors. Note that at the finest
level this includes the effects of all panels that are not treated in the
direct pass.
*/
For each level i = 2 to L {
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For each cube of the 8i cubes on level i {
/* Map local coefficients to local coefficients (L2L). */
If the cube’s parent has a local expansion, shift that expansion
to a local expansion about the cube’s center.

For each of the cube’s interaction cubes {
/* Map multipole coefficients to local coefficients (M2L). */
Convert the multipole expansion about the center of the
interaction cube to a local expansion about the cube’s
center and add it to the local expansion for the cube.

}
}

}

/*
THE EVALUATION PASS: Evaluates the local expansions at the finest level.
*/
For each cube of the 8L cubes on the lowest level {

/* Map local coefficients into potentials (L2P). */
Evaluate the cube’s local expansion for the potential at all the
evaluation points in the cube, and add those computed
potentials to the evaluation point potentials.

}

5 Implementation in FastCap

Our implementation of the multipole-accelerated capacitance extraction algorithm uses
an optimization which exploits the fact that the conversion and shift operations are linear
functions of the charges or the expansion coefficients, when the geometry is fixed. That
is, the complicated evaluations involved in converting charges to potentials or multipole
coefficients, shifting multipole coefficients, converting multipole coefficients to local coef-
ficients, shifting local coefficients, and converting local coefficients to potentials, are all
computed once, and stored as matrices which operate on charges or coefficients.

As an example, consider forming a 1st-order multipole expansion for a collection of k
charges. Following (9), a 1st-order multipole expansion has the form

ψ(r, θ, φ) ≈M0
0

Y 0
0 (θ, φ)

r
+M−1

1

Y −1
1 (θ, φ)

r2
+M0

1

Y 0
1 (θ, φ)

r2
+M1

1

Y 1
1 (θ, φ)

r2
, (16)

where M0
0 , . . . , M1

1 are complex multipole coefficients. Since M0
n is real for all n, and

M−m
n is always the complex conjugate of Mm

n , the multipole expansion can be written in
terms of real coefficients as

ψ(r, θ, φ) ≈ M̄0
0

P 0
0 (cos θ)

r
+M̄0

1

P 0
1 (cos θ)

r2
+M̄1

1

P 1
1 (cos θ) cosφ

2r2
+M̃1

1

P 1
1 (cos θ) sinφ

2r2
, (17)
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where M̄0
0 , M̄0

1 , M̄1
1 and M̃1

1 are real coefficients and Pm
n (cos θ) is the associated Legendre

function of degree n and order m. This equation appears as (30) in the appendix, where
it is discussed in more detail. This low order expansion can be more simply represented
as

ψ(x, y, z) ≈ M̄0
0

1

r
+ M̄0

1

z

r3
− M̄1

1

x

2r3
− M̃1

1

y

2r3
, (18)

where x, y and z are the evaluation point’s cartesian coordinates and r =
√
x2 + y2 + z2,

as usual.
The real coefficients are calculated using the appendix formulas (32) and (33) which

are analogous to (10). Writing the four equations for the four real coefficients as one
matrix equation yields the 4 × k linear system











P 0
0 (cosα1) · · · P 0

0 (cosαk)
ρ1P

0
1 (cosα1) · · · ρkP

0
1 (cosαk)

2ρ1P
1
1 (cosα1) cos β1 · · · 2ρkP

1
1 (cosαk) cos βk

2ρ1P
1
1 (cosα1) sin β1 · · · 2ρkP

1
1 (cosαk) sin βk



















q1
...
qk









=











M̄0
0

M̄0
1

M̄1
1

M̃1
1











, (19)

where q1, . . . , qk are the values of the k charges. The 4 × k matrix is called the Q2M
conversion matrix. Its ith column depends only on the coordinates of the ith charge.
Substituting for the associated Legendre functions using (26) and (27) from the appendix
and switching to rectangular coordinates simplifies the matrix to











1 · · · 1
z1 · · · zk

−2x1 · · · −2xk
−2y1 · · · −2yk



















q1
...
qk









=











M̄0
0

M̄0
1

M̄1
1

M̃1
1











. (20)

Note that the first row of the matrix implies that M̄0
0 is the sum of all the charge strengths,

making it identical to the coefficient M0
0 in (16).

Since the Q2M matrix is a function of the charge positions alone, its entries need be
calculated only once if several multipole algorithm potential evaluations are required for
the same charge geometry. In the notation of Algorithm 2, this amounts to using the
multipole algorithm to compute several Pw products with the same P but with different
w vectors. Each time the multipole algorithm is used to form a different Pw product,
a new vector of charge strengths is multiplied by the Q2M matrix yielding a vector of
updated multipole expansion coefficients. In a similar way, geometry dependent matrices
for all the other multipole algorithm conversions and shifts can be constructed and used
repeatedly in subsequent Pw product calculations.

In our implementation of the complete multipole-accelerated capacitance extraction
algorithm, given below, the shift and conversion coefficients are computed once and
stored.

Algorithm 3: Multipole-Accelerated Capacitance Extraction Algorithm

/* Setup Phase. */
Divide the m conductors into a total of n panels.
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Divide the problem domain into a hierarchy of cubes, so that each
of the finest level cubes has a maximum of 4 panels.

Compute the conversion and shifting matrices from the topology.
/* Loop Through all the Conductors. */
For j = 1 to m {

/* Set the Potential of the Panels on Conductor j to one. */
For k = 1 to n {

If panel k is on conductor j, set pk = 1.
Else pk = 0.

}
/* Solve for the Panel Charges using MGCR. */
Use GCR (Algorithm 1) to solve Pq = p, using

Multipole (Algorithm 2) to compute Pw.
/* Sum the Charges on Conductor i to Compute Cij */
For i = 1 to m Cij =

∑

k∈conductori qk.
}

Figure 4: Bus structure test problem with 2 × 2 conductors.

To determine the effectiveness of this approach, the multipole accelerated algorithm
was tested on the easily parameterized bus structure given in Fig. 4, for busses with
2 × 2 conductors through 6 × 6 conductors. The conductor surfaces are discretized by
first cutting each conductor into sections based on where pairs of conductors overlap.
In the 2 × 2 bus example, each conductor is cut into five sections (see Fig. 5a), and in
the 6 × 6 example each conductor is divided into thirteen sections. The discretization is
then completed by dividing each face of each section into nine panels, as demonstrated
in Fig. 5b. The edge panels have widths that are 10% of the inner panel widths to
accurately discretize the expected increased charge density near conductor edges [14].
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Figure 5: Conductor sections are divided into panels.

In Table 1 below, we report the results of our experiments with the various approaches
to solving (5), the matrix problem associated with the boundary element method. In the
table, the total number of panels resulting from the conductor surface discretization is
given, followed by the CPU times (on an I.B.M. 6000) required to compute the entire m×
m capacitance matrix, where m is the number of conductors. Three methods for solving
(5) are compared: direct or LU factorization, GCR, and multipole accelerated GCR
(MGCR). The MGCR algorithm’s CPU times are strongly dependent on the number
of expansion terms, so the time required when zero, first and second order expansions
(l = 0, 1, 2) are used is given. Also in the table are the total number of iterations
required to reduce the max norm of the residual in GCR and MGCR to 1%. The CPU
times in parenthesis are extrapolated. They correspond to calculations that were not
possible because of the excessive memory required to store the entire potential coefficient
matrix, and our lack of patience.

As is clear from the results, the multipole-accelerated GCR algorithm is very effective
for the larger problems, particularly if the expansion order is low. To examine the effect of
expansion order on accuracy, in Table 2 we compare the resulting capacitances computed
by solving (5) for the 4 × 4 conductor problem with LU factorization, GCR and MGCR
for expansion orders 0, 1, and 2. One row of the 4 × 4 capacitance matrix2 is given for
the five different solution methods. The row chosen represents the capacitance associated
with one of the conductors on the outer edge. Taking the direct method results as exact,
the data indicate that MGCR can attain better than 10% accuracy in the diagonal entry
of the capacitance matrix with only a zero order (l = 0) expansion. To achieve reasonable
relative accuracy in the smallest coupling capacitance, C14, which is fifty times smaller
than the diagonal entry, C11, the 2nd-order expansion is required. In that case MGCR

2In the 4 × 4 conductor example the lengths have been normalized so that the conductors are each
five meters long, one meter high and one meter wide, and all interconductor spaces are one meter. The
capacitances are given in picofarads by scaling the program results by 4πǫ0 = 111.27 pF/m.
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Test Problem
2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

panels 792 1620 2736 4140 5832
direct time 275 2700 12969 44345 (141603)
GCR time 121 570 2115 4881 (14877)
MGCR time (l = 2) 55 218 378 790 1412
MGCR time (l = 1) 29 108 245 436 775
MGCR time (l = 0) 9 48 98 216 356
GCR iters 48 78 120 150 (180)
MGCR iters (l = 2) 48 82 120 150 180
MGCR iters (l = 1) 54 88 120 150 180
MGCR iters (l = 0) 58 90 120 150 180

Table 1: Comparison of Extraction Methods, CPU Times in I.B.M. 6000 Seconds

Solution Capacitance Matrix Entry (pF)
Method C11 C12 C13 C14 C15 C16 C17 C18

direct 404.6 −137.0 −12.04 −7.910 −48.42 −40.09 −40.09 −48.42
GCR 404.2 −137.2 −11.64 −8.083 −48.37 −39.93 −39.93 −48.37
MGCR (l = 2) 405.2 −137.8 −11.91 −8.079 −48.36 −40.09 −40.01 −48.45
MGCR (l = 1) 406.6 −139.7 −12.36 −6.676 −48.48 −40.45 −40.27 −48.46
MGCR (l = 0) 394.5 −124.0 −0.175 −2.471 −52.15 −43.39 −43.08 −52.92

Table 2: Comparison of Extraction Methods, 4 × 4 Conductor Problem Capacitances

produces results nearly identical to GCR indicating that further increases in accuracy
would require tightening the iterative loop tolerance as well as increasing the expansion
order.

As mentioned above, computing the potentials given a new charge vector using the
multipole algorithm just involves applying mapping matrices to the changing charges
or multipole and local coefficients. Viewed in this way, the multipole algorithm can
be compared more precisely to explicitly computing the matrix-vector product Pw by
counting the number of multiply-add operations required in each case. This is a way of
comparing MGCR to GCR that eliminates the effects of implementation differences. The
number of multiply-add operations required by the four iterative methods of Tables 1
and 2 for each Pw product is plotted in Fig. 6, as a function of problem size. As
seen in the plot, all the MGCR methods require fewer operations than GCR for each Pw
product when the number of panels, n, exceeds approximately 1000. Furthermore, the
cost of a Pw calculation grows as n2 for GCR but roughly as n for the MGCR methods,
with the expansion order affecting only the slope.
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Figure 6: Multiply-Add operations required for a single Pw calculation as a function of
problem size.
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6 Conclusions and Acknowledgments

The above results indicate that the multipole-accelerated GCR (MGCR) algorithm is
faster than both LU factorization and GCR alone for problems with more than 1000
panels. Capacitance extraction problems with nearly 6000 panels can be solved using
MGCR in about twenty-five minutes on a workstation, roughly ten times faster than
GCR, with comparable accuracy. Furthermore, the multipole algorithm provides an ap-
proach for trading accuracy for CPU time through reducing the expansion order; if low
accuracy is tolerable, another factor of three or four speed improvement can be obtained.
Finally, MGCR does not require explicit storage of the entire potential coefficient matrix
as do GCR and LU factorization, resulting in significantly smaller memory requirements.
Combining these features makes it feasible to perform capacitance extraction of compli-
cated structures as the “inner loop” of a design optimization procedure.

Additional work is under way to improve the efficiency of the multipole algorithm,
and we are currently working on making the algorithm adaptive. Future research includes
investigating using block iterative techniques to reduce the number of iterations required
and extending the approach to solving problems with piecewise-constant dielectrics and
ground planes. In addition, we will extend our program to handle arbitrary triangular
and quadrilateral panels so that more esoteric structures can be discretized.

The authors would like to thank David Ling and Albert Ruehli of the I.B.M. T. J.
Watson Research Center for the many discussions and their help in understanding the
integral equation method, and Albert Ruehli for the suggestion that led to the approach
presented here. In addition, we would like to acknowledge the helpful discussions with
Tom Simon and the members of the M.I.T. custom integrated circuits group.

A Multipole Algorithm Formulas

This appendix presents the multipole algorithm expansion, shift and conversion formulas
used in the capacitance extraction algorithm implementation. The formulas used are
equivalent to those in the original multipole algorithm formulation of [2, 3] but avoid
complex arithmetic. They are obtained by combining complex conjugates in the original
formulas to obtain expressions in the style of [7]. Section A.1 defines the real valued
coefficients and the spherical harmonics which together are used to form the multipole
formulas of Section A.2.

A.1 Formula Components

Each multipole or local expansion term involves a coefficient multiplying a spherical har-
monic. When a real coefficient expansion is used this fact is obscured by the combination
of complex conjugates. However, since the real coefficient expansions are just reorganiza-
tions of the complex coefficient formulas, the same coefficients and spherical harmonics
appear in slightly different form.
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A.1.1 Real Valued Expansion Coefficients

Given a multipole or local expansion coefficient, Gm
n , the corresponding real valued coef-

ficients are defined as

Ḡm
n

△
=



















2
√

(n+|m|)!
(n−|m|)!

Re{Gm
n }, |m| > 0, |m| ≤ n;

Gm
n , m = 0, m ≤ n;

0, otherwise;

(21)

G̃m
n

△
=































− 2
√

(n+m)!
(n−m)!

Im{Gm
n }, m > 0, m ≤ n;

2
√

(n+|m|)!
(n−|m|)!

Im{Gm
n }, m < 0, |m| ≤ n;

0, otherwise.

(22)

All the multipole algorithm formulas are converted to real coefficients using these sub-
stitutions for the complex coefficients.

A.1.2 Spherical Harmonics

The functions

Y m
n (θ, φ)

△
=

√

√

√

√

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ, (23)

are called surface spherical harmonics. A surface spherical harmonic is part of a solution
to Laplace’s equation obtained by separation of variables. Here, as in [8], a surface
spherical harmonic is the product of the elevation (θ) and azimuth (φ) components of
the solution. Unlike the usual definition, however, a normalization constant is omitted
following [2, 3]. The complete solution is a product of Y m

n and a power of r, the radial
coordinate. The result, for example

1

rn+1
Y m
n (θ, φ), (24)

is called a spherical harmonic.
The function Pm

n (cos θ) is the associated Legendre function of the first kind with
degree n and order m. These functions are defined only when n is a non-negative integer
and m is an integer such that −n ≤ m ≤ n. For convenience any Pm

n (cos θ) whose indices
do not satisfy these restrictions is taken to be zero.

The recursion

(n−m)Pm
n (cosα)

= (2n− 1) cosα Pm
n−1(cosα) − (n+m− 1)Pm

n−2(cosα), (25)

valid for 0 ≤ m ≤ n− 2, and the formulas

Pm
m (cosα) =

(2m)!

2mm!
(− sinα)m, 0 ≤ m, (26)

Pm
m+1(cosα) = (2m + 1) cosαPm

m (cosα), 0 ≤ m, (27)

can be used to recursively evaluate the Legendre functions [7, 10].



20 A MULTIPOLE ALGORITHM FORMULAS

A.2 Real Coefficient Multipole Algorithm Formulas

Using the real valued coefficients and the spherical harmonics of the previous section, the
multipole algorithm formulas used in the capacitance extraction algorithm are obtained.
The resulting real coefficient formulas eliminate the need for complex arithmetic and
square root calculations.

A.2.1 Multipole Expansion (Q2M, M2P)

The order l multipole expansion approximation to the potential, ψ, at the point (r, θ, φ)
is

ψ(r, θ, φ) ≈
l
∑

n=0

n
∑

m=−n

Mm
n

rn+1
Y m
n (θ, φ). (28)

Applying the definition of the surface spherical harmonic, Y m
n , gives

ψ(r, θ, φ) ≈
l
∑

n=0

n
∑

m=−n

Mm
n

rn+1

√

√

√

√

(n− |m|)!
(n + |m|)!P

|m|
n (cos θ)eimφ. (29)

Substituting the real coefficients using (21) and (22) yields the real coefficient multipole
expansion,

ψ(r, θ, φ) ≈
l
∑

n=0

1

rn+1

n
∑

m=0

(n−m)!

(n+m)!
Pm
n (cos θ)

[

M̄m
n cos(mφ) + M̃m

n sin(mφ)
]

. (30)

The complex coefficient local expansion conversion is nearly identical.
A multipole expansion is constructed from k charges with strengths qi and positions

(ρi, αi, βi), i = 1, . . . , k, using

Mm
n

△
=

k
∑

i=1

qi ρ
n
i Y

−m
n (αi, βi). (31)

Substituting (21) and (22) gives expressions for the real multipole coefficients correspond-
ing to a set of k charges,

M̄m
n =























2
∑k

i=1 qi ρ
n
i P

|m|
n (cosαi) cos(mβi), |m| > 0, |m| ≤ n;

∑k
i=1 qi ρ

n
i P

0
n(cosαi), m = 0, m ≤ n;

0, otherwise;

(32)

M̃m
n =







2
∑k

i=1 qi ρ
n
i P

|m|
n (cosαi) sin(mβi), |m| > 0, |m| ≤ n;

0, otherwise.
(33)

A.2.2 Local Expansion (Q2L, L2P)

The order l local expansion approximation to the potential, ψ, at the point (r, θ, φ) is

ψ(r, θ, φ) ≈
l
∑

n=0

n
∑

m=−n

Lm
n Y

m
n (θ, φ)rn, (34)
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or

ψ(r, θ, φ) ≈
l
∑

n=0

n
∑

m=−n

Lm
n

√

√

√

√

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφrn. (35)

Substituting the real coefficients using (21) and (22) yields the real coefficient local ex-
pansion,

ψ(r, θ, φ) ≈
l
∑

n=0

rn
n
∑

m=0

(n−m)!

(n+m)!
Pm
n (cos θ)

[

L̄m
n cos(mφ) + L̃m

n sin(mφ)
]

. (36)

A local expansion is constructed from k charges with strengths qi and positions
(ρi, αi, βi), i = 1, . . . , k, using

Lm
n

△
=

k
∑

i=1

qi
ρn+1
i

Y −m
n (αi, βi). (37)

Substituting (21) and (22) gives expressions for the real multipole coefficients correspond-
ing to a set of charges,

L̄m
n =























2
∑k

i=1
qi

ρn+1

i

P |m|
n (cosαi) cos(mβi), |m| > 0, |m| ≤ n;

∑k
i=1

qi
ρn+1

i

P 0
n(cosαi), m = 0, m ≤ n;

0, otherwise;

(38)

L̃m
n =







2
∑k

i=1
qi

ρn+1

i

P |m|
n (cosαi) sin(mβi), |m| > 0, |m| ≤ n;

0, otherwise.
(39)

A.2.3 Multipole Expansion Shift (M2M)

Consider a multipole expansion about the point (ρ, α, β). The potential at a given point
results when its coordinates relative to (ρ, α, β) are substituted into the expansion. If the
expansion about (ρ, α, β) has coefficients Om

n , then the coefficients of a shifted multipole
expansion about the origin, Nk

j , are given by

Nk
j =

j
∑

n=0

n
∑

m=−n

√

(j + k)!(j − k)! i|k|−|m|−|k−m| Y −m
n (α, β)Ok−m

j−n ρ
n

√

(j − n + k −m)! (j − n− k +m)! (n+m)! (n−m)!
. (40)

Substituting for the surface spherical harmonics using (23) and for the complex coeffi-
cients with (21) and (22) gives the real coefficient multipole expansion shift formulas for
j ≥ k ≥ 0,

N̄k
j = (j + k)!

j
∑

n=0

ρn
n
∑

m=0

fM(m, k)
Pm
n (cosα)

(n +m)!

·
{

ik−m−|k−m|

(j − n + |k −m|)!
[

Ōk−m
j−n cos(mβ) − Õk−m

j−n sin(mβ)
]
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+
(−1)m

(j − n+ k +m)!

[

Ōk+m
j−n cos(mβ) + Õk+m

j−n sin(mβ)
]

}

; (41)

Ñk
j = (j + k)!

j
∑

n=0

ρn
n
∑

m=0

fM(m, k)
Pm
n (cosα)

(n +m)!

·
{

ik−m−|k−m|

(j − n + |k −m|)!
[

Ōk−m
j−n sin(mβ) + Õk−m

j−n cos(mβ)
]

+
(−1)m

(j − n+ k +m)!

[

−Ōk+m
j−n sin(mβ) + Õk+m

j−n cos(mβ)
]

}

. (42)

Here

fM(m, k)
△
=



















1, m 6= 0, k 6= 0;
1/2, m = 0, k 6= 0;
1/2, m 6= 0, k = 0;
1/2, m = 0, k = 0.

(43)

A.2.4 Multipole to Local Expansion Conversion (M2L)

An order l multipole expansion about the point (ρ, α, β), with coefficients Om
n , can be

converted to an order l local expansion about the origin, with coefficients Nk
j , using

Nk
j =

l
∑

n=0

n
∑

m=−n

√

(j + n+m− k)! (j + n−m + k)! i|k−m| Y m−k
j+n (α, β)Om

n
√

(n +m)! (n−m)! (j + k)! (j − k)! (−1)n i|k|+|m| ρj+n+1
. (44)

Substituting for the surface spherical harmonics using (23) and for the complex coeffi-
cients with (21) and (22) gives the real coefficient multipole to local expansion conversion
formulas for l ≥ j ≥ k ≥ 0,

N̄k
j =

fL(k)

ρj(j − k)!

l
∑

n=0

(−1)n

ρn+1

n
∑

m=0

P
|m−k|
j+n (cosα)

(j + n− |m− k|)!
(n+m)!

i|k−m|−k−m

·
{

Ōm
n cos[(m− k)β] + Õm

n sin[(m− k)β]
}

+Pm+k
j+n (cosα)

(j + n−m− k)!

(n+m)!

·
{

Ōm
n cos[(m + k)β] + Õm

n sin[(m + k)β]
}

; (45)

Ñk
j =

1

ρj(j − k)!

l
∑

n=0

(−1)n

ρn+1

n
∑

m=0

P
|m−k|
j+n (cosα)

(j + n− |m− k|)!
(n+m)!

i|k−m|−k−m

·
{

−Ōm
n sin[(m− k)β] + Õm

n cos[(m− k)β]
}

+Pm+k
j+n (cosα)

(j + n−m− k)!

(n+m)!
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·
{

Ōm
n sin[(m+ k)β] − Õm

n cos[(m+ k)β]
}

. (46)

Here

fL(k) =

{

1, k 6= 0;
1/2, k = 0.

(47)

A.2.5 Local Expansion Shift (L2L)

An order l local expansion about the point (ρ, α, β), with coefficients Om
n , can be con-

verted to an order l local expansion about the origin, with coefficients Nk
j , using

Nk
j =

l
∑

n=j

n
∑

m=−n

√

(n +m)!(n−m)! i|m|−|k|−|m−k| Y m−k
n−j (α, β)Om

n ρn−j

√

(n− j +m− k)!(n− j −m + k)!(j + k)!(j − k)! (−1)n−j
. (48)

Substituting for the surface spherical harmonics using (23) and for the complex coef-
ficients with (21) and (22) gives the real coefficient local expansion shift formulas for
j ≥ k ≥ 0,

N̄k
j =

fL(k)

(−ρ)j(j − k)!

l
∑

n=j

(−ρ)n
n
∑

m=0

P
|m−k|
n−j (cosα)

im−k−|m−k|

(n− j + |m− k|)!(n−m)!

·
{

Ōm
n cos[(m− k)β] + Õm

n sin[(m− k)β]
}

+Pm+k
n−j (cosα)

(−1)k

(n− j +m + k)!(n−m)!

·
{

Ōm
n cos[(m + k)β] + Õm

n sin[(m + k)β]
}

; (49)

Ñk
j =

1

(−ρ)j(j − k)!

l
∑

n=j

(−ρ)n
n
∑

m=0

P
|m−k|
n−j (cosα)

im−k−|m−k|

(n− j + |m− k|)!(n−m)!

·
{

−Ōm
n sin[(m− k)β] + Õm

n cos[(m− k)β]
}

+Pm+k
n−j (cosα)

(−1)k

(n− j +m + k)!(n−m)!

·
{

Ōm
n sin[(m+ k)β] − Õm

n cos[(m+ k)β]
}

. (50)

The function fL(k) is given by (47).
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