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Fast Capacitance Extraction of General

Three-Dimensional Structures

K. Nabors S. Kim J. White

Abstract

In [1], a boundary-element based algorithm was presented for computing the capac-
itance of three-dimensional m-conductor structures whose computational complexity
grows nearly as mn, where n is the number of elements used to discretize the conduc-
tor surfaces. In that algorithm, a generalized conjugate residual iterative technique
is used to solve the n × n linear system arising from the discretization, and a multi-
pole algorithm is used to compute the iterates. In this paper, several improvements to
that algorithm are described which make the approach in [1] applicable and computa-
tionally efficient for almost any geometry of conductors in a homogeneous dielectric.
In particular, a new adaptive multipole algorithm is described, along with a strategy
for accelerating the iterative algorithm by exploiting electrostatic screening. Results
using these techniques in a program which computes the capacitance of general three-
dimensional structures are presented to demonstrate that the new algorithm is nearly
as accurate as the more standard direct factorization approach, and is more than two
orders of magnitude faster for large examples.

I. Introduction

In the design of high performance integrated circuits and integrated circuit packaging,
there are many cases where accurate estimates of the capacitances of complicated three-
dimensional structures are important for determining final circuit speeds and functionality.
Algorithms using method of moments [2] or weighted-residuals [3, 4] based discretizations of
integral equation formulations, also known as boundary-element methods [5], are commonly
used to compute these capacitances, but such approaches generate dense matrix problems
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which are computationally expensive to solve, and this limits the complexity of problems
which can be analyzed.

In [1], a fast algorithm for computing the capacitance of three-dimensional structures
of rectangular conductors in a homogenous dielectric is presented. The method solves the
discretized capacitance problem using an iterative technique with iterates computed by a
hierarchical multipole algorithm [6, 7]. This general strategy was first suggested in [8]. The
computation time for the algorithm was shown to grow nearly as mn, where n is the number
of panels used to discretize the conductor surfaces, and m is the number of conductors. In
this paper, we describe several improvements to that algorithm and present computational
results on a variety of examples to demonstrate that the new method is accurate and can be
as much as two orders of magnitude faster than standard direct factorization approaches.

The outline of the paper is as follows. The boundary-element formulation and a standard
iterative algorithm for solving the generated matrix problem are briefly reviewed in Section II.
A simplified version of the hierarchical multipole algorithm is described in Section III, and
our new adaptive multipole algorithm tuned to the boundary-element formulation is given
in Section IV. A new preconditioning strategy for accelerating the iterative algorithm, based
on the idea of screening, is presented in Section V. Experimental results using our program
FASTCAP to analyze a wide variety of structures, made possible by a link to the M.I.T.
Micro-Electro-Mechanical Computer Aided Design (MEMCAD) system [9], are presented in
Section VI. Finally, conclusions and acknowledgements are given in Section VII.

II. Problem Formulation

Capacitance extraction is made tractable by assuming the problem contains conductors em-
bedded in a homogenous dielectric medium, though the techniques described below can be
extended to the piecewise-constant dielectric case using the approach in [10]. The capaci-
tance of an m-conductor geometry can then be summarized by an m×m symmetric matrix
C, where the j-th column of C has a positive entry Cjj, representing the self-capacitance
of conductor j, and negative entries Cij, representing coupling between conductors j and i,
i = 1, 2,. . . , m, i 6= j. To determine the j-th column of the capacitance matrix, one need
only solve for the surface charges on each conductor produced by raising conductor j to one
volt while grounding the rest. Then Cij is numerically equal to the charge on conductor i,
i = 1, 2,. . . , m. Repeating this procedure m times gives the m columns of C.

These m potential problems can be solved using an equivalent free-space formulation in
which the conductor-dielectric interfaces are replaced by a charge layer of density σ [11, 10].
Assuming a homogenous dielectric, the charge layer in the free-space problem will be the
induced charge in the original problem if σ satisfies the integral equation

ψ(x) =
∫

surfaces
σ(x′)

1

4πǫ0‖x− x′‖
da′, x ∈ surfaces. (1)

where ψ(x) is the known conductor surface potential, da′ is the incremental conductor surface

area, x, x′ ∈ R3, and ‖x‖ is the usual Euclidean length of x given by
√

x21 + x22 + x23.
A standard approach to numerically solving (1) for σ is to use a piece-wise constant

collocation scheme. That is, the conductor surfaces are broken into n small panels or tiles,

2



and it is assumed that on each panel i, a charge, qi, is uniformly distributed. Then for
each panel, an equation is written which relates the known potential at the center of that
i-th panel, denoted pi, to the sum of the contributions to that potential from the n charge
distributions on all n panels [10]. The result is a dense linear system,

Pq = p (2)

where P ∈ Rn×n, q is the vector of panel charges, p ∈ Rn is the vector of known panel
potentials, and

Pij =
1

aj

∫

panelj

1

4πǫ0‖xi − x′‖
da′, (3)

where xi is the center of the i-th panel and aj is the area of the j-th panel. Since the
discretiztion uses point collocation, in general Pij 6= Pji, that is P is unsymmetric.

The dense linear system of (2) can be solved to compute panel charges from a given set
of panel potentials, and the capacitances can be derived by summing the panel charges. If
Gaussian elimination is used to solve (2), the number of operations is order n3. Clearly,
this approach becomes computationally intractable if the number of panels exceeds several
hundred. Instead, consider solving the linear system (2) using a conjugate-residual style
iterative method like GMRES [12]. Such methods have the form given below:

Algorithm 1: GMRES algorithm for solving (2)
Make an initial guess to the solution, q0.
Set k = 0.
do {

Compute the residual, rk = p− Pqk.
if ‖r‖ < tol, return qk as the solution.
else {

Choose α’s and β in
qk+1 =

∑k
j=0 αjq

j + βrk

to minimize ‖rk+1‖.
Set k = k + 1.

}
}

The dominant costs of Algorithm 1 are in calculating the n2 entries of P using (3)
before the iterations begin, and performing n2 operations to compute Pqk on each iteration.
Described below is our adaptive hierarchical multipole algorithm which, through the use of
carefully applied approximations, avoids forming most of P and reduces the cost of forming
Pqk to order n operations. This does not necessarily imply that each iteration of the GMRES
algorithm can be computed with order n operations. If the number of GMRES iterations
required to achieve convergence approaches n, then to perform the minimization in each
GMRES iteration will require order n2 operations. This problem is avoided through the use
of a preconditioner, also described below, which reduces the number of GMRES iterations
required to achieve convergence to well below n for large problems.
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III. The Hierarchical Multipole Algorithm

A complete description of the hierarchical multipole algorithm is not given here; the original
description is in [6, 7], and its application to capacitance extraction is described in [1]. Instead
we describe the expansion approximation and examine a simplified two-dimensional example
which both exhibits the method’s salient features, and motivates the adaptive algorithm and
the preconditioner described in subsequent sections.

3.1. Multipole Expansions

Multipole expansions are often used to approximate the far field due to a confined charge
distribution [13]. For example, consider evaluating the potential pi at the center of a panel
i, (ri, φi, θi), due to a collection of d distant panels, as in Figure 1. The potential due to
the surface charges on those d panels is given approximately by the truncated multipole
expansion

ψ(ri, φi, θi) ≈
l

∑

n=0

n
∑

m=−n

Mm
n

rn+1
i

Y m
n (φi, θi) (4)

where the spherical coordinates of the evaluation location are measured relative to the origin
of the multipole expansion, Y m

n (φi, θi) are the surface spherical harmonics, Mm
n are the

multipole coefficents determined from the panel charges, and l is the expansion order.
Given the multipole coefficients, the same multipole expansion can be used to quickly,

but approximately, evaluate the potential at many panel centers. For example, in Figure 1,
there are d charged panels, and d panel centers where the potential must be evaluated. A
direct calculation of those potentials requires order d2 operations, but only order d operations
are needed if the multipole expansion is used (assuming the expansion order l is fixed).

In the Figure 1 case, the error due to truncating the multipole expansion is bounded [7],
as in

∣

∣

∣

∣

∣

ψ(ri, φi, θi)−
l

∑

n=0

n
∑

m=−n

Mm
n

rn+1
i

Y m
n (φi, θi)

∣

∣

∣

∣

∣

≤ K1

(

R

ri

)l+1

≤ K1

(

R

r

)l+1

. (5)

The quantities r and R are as in Figure 1 and K1 is a constant independent of the multipole
expansion order, l. The bound indicates that the multipole potential evaluations converge
more rapidly with expansion order as the minimum distance between the panel charges and
the evaluation points increases.

In order to ensure that the error bound in (5) tightens sufficiently with each increase
in expansion order l, the hierarchical multipole algorithm uses a multipole expansion to
represent the effect of charge in a region only if the radius of the region, R, is less than half
the distance between the region’s center and the evaluation point, denoted r. For example,
in Figure 2 two groups of panels are represented by a multipole expansions of order l, and
by the above criteria, both can be used to evaluate the potential at panel i’s center, as
R/r = 3R/3r < 0.5.

3.2. A Two-Dimensional Example

The aggregation of distant tiles into multipole expansions which can be used to evaluate
potentials at many panel centers is the source of the hierarchical multipole algorithm’s effi-
ciency. Maintaining this efficiency for general distributions of panels while controlling error
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Fig. 1. The evaluation of the potential at (ri, φi, θi).
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Fig. 2. The evaluation of two multipole expansions with the same error bound.
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is ensured by exploiting a hierarchical partitioning of the problem domain, the smallest cube
containing all the conductors.

Consider, for example, evaluating the potential at some point (ri, φi, θi) in Figure 3 due
to panel charges inside the illustrated problem domain. A first partitioning would be to
break the problem into four smaller squares, leaving (ri, φi, θi) somewhere in the lower left
square (Figure 3b)1. To ensure that the errors due to truncating the multipole expansion
shrink rapidly with increasing expansion order, multipole expansions will not be used to
represent the charges in squares 1, 2 and 3, when evaluating the potential at points in the
lower-left square, because R1/r1, R2/r2 and R3/r3 in Figure 3b are all greater than 0.5.
For the particular example evaluation point in the lower-left square, the charge in square
2 is distant enough to satisfy the criteria for using multipole expansions. However, a more
detailed study of the hierarchical multipole algorithm than we will consider here would show
that it is not efficient to exploit such special cases.

Squares 1, 2 and 3 are each divided into four squares, as in Figure 3c, to produce smaller
regions which can possibly satisfy the criteria for representation by a multipole expansion.
In fact, many of the smaller squares do satisfy the criteria, as can be seen by examining the
illustrated case, for which R/r is less than 0.5. Thus, at the end of this partitioning step, all
the charges in the squares marked with an M in Figure 3c will be represented with a multipole
expansion when evaluating the potential at points in the square containing (ri, φi, θi).

In order for the multipole expansions to be used to represent the potential due to panel
charges contained in the unmarked squares of Figure 3c, these squares are partitioned further,
as in Figure 3d. Then, as before, the distance criteria implies that multipole expansions can
be used to represent the panel charges in all but a few squares near the square containing
the evaluation point. If it is determined not to partition any further than is indicated in
Figure 3d, the potential pi, at (ri, φi, θi), can then be computed by summing a “near” or
direct term and a “far” or multipole term. That is, the “near” contribution to pi is due to
panel charges in the nine unmarked squares in Figure 3d, and is computed directly from Pijqj
products. The “far” contribution to pi is due to distant panels charges and is determined by
evaluating the 25 mulitpole expansions indicated in Figure 3d. In the next section, we will
refer to the list of squares associated with those 25 multipole expansions as the multipole list

for the square containing (ri, φi, θi).
In general, the number of partitioning levels, L, for a given problem domain is selected

so that the squares on the finest level each have no more than k panels (typically k is of the
order of ten). Then for a uniform distribution of panels, the number of partitioning levels will
be given by L = log n

k
. Since the number of multipole expansions on each partitioning level

which contribute to pi is bounded by a constant, each potential evaluation involves order
log n multipole expansion evaluations. Also, since each lowest level square has no more than
k panels, the direct contribution to pi is bounded by a constant. Therefore, as evaluating
the entire potential vector requires n evaluations of this type, the above multipole approach
is an order n logn algorithm for computing an approximation to Pq.2 The hierarchical
multipole algorithm given in [7], and used in the FASTCAP program described below, is

1In the three-dimensional problem, the equivalent partitioning would be to divide a cube into eight smaller
cubes.

2The analysis is similar for the three-dimensional case. The primary difference is that in the three-
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Fig. 3. The evaluation of the potential at (ri, φi, θi).
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more sophisticated than the above approach suggests. In particular, multipole evaluations
are efficiently combined into local expansions in such a way as to reduce the number of
operations to order n. However, for purposes of describing the adaptive algorithm and the
preconditioning techniques below, the simplified algorithm above is sufficiently detailed.

IV. Boundary-Element Oriented Adaptive Calculation

In general, when representing the charge in a region by a multipole expansion, the coefficients
Mm

n in (4) are determined from the charge density, q(ρ, α, β), as

Mm
n =

∫

region
q(ρ, α, β)ρnY −m

n (α, β)da′. (6)

In this section, computing the multipole expansion coefficients for panel charges is examined
in more detail, and is shown to lead naturally to an adaptive multipole algorithm.

4.1. Computing the Multipole Expansions

Returning to Figure (1), the potential at the Cartesian equivalent of (ri, φi, θi), (xi, yi, zi),
due to d distant panels may be approximated with a zeroth-order multipole expansion, which
is equivalent to computing the potential due to a single charge equal to the sum of the d
panel charges, and located at the center of the smallest ball enclosing the panels,

ψ(xi, yi, zi) ≈ M̄0
0

1

ri
. (7)

Here (xi, yi, zi) is the i-th panel’s center point relative to the center of the smallest ball

enclosing the distant panels, ri
△
=

√

x2i + y2i + z2i , and

M̄0
0

△
=

d
∑

j=1

qj . (8)

The approximation

ψ0(xi, yi, zi)
△
= M̄0

0

1

ri
(9)

is the zeroth-order multipole expansion for the potential due to the distant panels. For
accuracy reasons, higher order expansions are typically used. For example, the first-order
multipole expansion for ψ is

ψ(xi, yi, zi) ≈ ψ0(xi, yi, zi) + ψ1(xi, yi, zi), (10)

with

ψ1(xi, yi, zi)
△
= M̄0

1

zi
r3i

− M̄1
1

xi
2r3i

− M̃1
1

yi
2r3i

, (11)

dimensional case space is partitioned into cubes, and when cubes are subpartitioned, they generate eight
smaller cubes.
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where, for panels on which the charge is assumed uniformly distributed,

M̄0
1

△
=

d
∑

j=1

qj
aj

∫

panelj

z′da′; (12)

M̄1
1

△
= −2

d
∑

j=1

qj
aj

∫

panelj

x′da′; (13)

M̃1
1

△
= −2

d
∑

j=1

qj
aj

∫

panelj

y′da′. (14)

The added potential ψ1 is the field due to a single dipole aligned along the vector

(x, y, z) = (M̄0
1 ,−M̄

1
1 /2,−M̃

1
1 /2). (15)

In general, the l-th order multipole expansion in (4) can be rewritten in the form

ψ(xi, yi, zi) ≈
l

∑

n=0

ψn(xi, yi, zi), (16)

with each ψn cooresponding to the potential due to a 2n-pole charge constellation.

4.2. The Adaptive Algorithm

The simple multipole algorithm discussed in Section III uses multipole expansions to rep-
resent potentials due to panel charges inside cubes which are far enough away from the
evaluation point. The efficiency of this procedure depends on the number of panels in the
cubes. Consider, for example, a cube containing three panels whose potential is to be ap-
proximated using a first-order multipole expansion of the form (16),

ψ(xi, yi, zi) ≈ M̄0
0

1

ri
+ M̄0

1

zi
r3i

− M̄1
1

xi
2r3i

− M̃1
1

yi
2r3i

. (17)

The exact potential due to the cube’s panels has the form

ψ(xi, yi, zi) = Pi1q1 + Pi2q2 + Pi3q3, (18)

assuming the three panels are numbered 1, 2 and 3. In the capacitance calculation, the
geometry-dependent quantities in (17) and (18) are calculated once and stored for repeated
use in computing the iterates of Algorithm 1. Thus evaluating (17) involves multiplying four,
fixed, geometry-dependent quantities

1

ri
,

zi
r3i
,

xi
2r3i

,
yi
2r3i

(19)

by the charge-dependent multipole coefficients M̄0
0 , M̄

0
1 , M̄

1
1 and M̃1

1 , while (18) involves
computing only the three products, multiplying the geometric quantities Pij , j = 1, . . . , 3,
by the corresponding charges. Thus evaluating the exact potential from (18) requires one
less operation than evaluating the approximate potential using (17), indicating that it will
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be more efficient to evaluate the potential due to panels in this cube using Pijqj products
rather by evaluating multipole expansions.

An adaptive multipole algorithm can be derived from the simplified approach described in
Section III if the potential due to panel charges in a cube is always evaluated directly, rather
than with a multipole approximation, whenever the number of expansion coefficients would
exceed the number of panels. A more precise definition of the computational procedure is
given in Algorithm 2 below, which uses some notation which we now introduce.

The cube which contains the entire problem domain is referred to as the level 0 cube. If
the volume of the cube is divided into eight equally sized child cubes, referred to as level 1
cubes, then each has the level 0 cube as its parent. The panels are distributed among the
child cubes by associating a panel with a cube if the panel’s center point is contained in
the cube. This process can be repeated to produce L levels of cubes, and L partitionings
of panels starting with an 8-way partitioning and ending with an 8L-way partitioning. The
number of levels, L, is chosen so that the maximum number of panels in any finest, or L-th,
level cube is less than some threshold (nine is a typical default). A neighbor of a given cube
is defined as any cube which shares a corner with the given cube or shares a corner with a
cube which shares a corner with the given cube (note that a cube has a maximum of 124
neighbors). Finally, in the algorithm below it is assumed that for each finest-level cube, a
multipole list has been constructed using a recursive approach similar to that given in the
two-dimensional example above.

Algorithm 2: Adaptive Algorithm for Computing p = Pq.
Comment: Compute the potential due to nearby charges directly.

For each finest-level cube i = 1 to 8L {
For each panel j in finest-level cube i {

Set pj = 0.
For each panel k in cube i or its neighbors {

Add Pjkqk to pj.
}

}
}

Comment: Compute the multipole coefficients from the charge vector q.
Comment: order is the order of the multipole expansion (typically 2).

For each level j = L to 2 {
For each level j cube i = 1 to 8j {

If cube i contains more than (order + 1)2 panels {
Compute the multipole coefficients for cube i using
panel charges and/or coefficients of child cube multipole
expansions.

}
}

}
Comment: Compute the potential due to distant panels.

For each finest-level cube i = 1 to 8L {
For each cube j in cube i’s multipole list {
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If cube j contains more than (order + 1)2 panels {
For each panel k in cube i {

Evaluate the multipole expansion for cube j at
(xk, yk, zk) and add to pk.

}
}
Else {

For each panel k in cube i {
For each panel l in cube j {

Add Pklql to pk.
}

}
}

}
}

It should be again noted that, as mentioned at the end of Section III, Algorithm 2 is a
simplified version of the hierarchical multipole algorithm [14, 7] used in FASTCAP [1]. The
complete algorithm also adaptively applies local expansions to improve the efficiency of the
process of gathering together multipole expansions.

4.3. Comparison to Previous Work

The above approach to making the multipole algorithm adaptive is specialized to the boundary-
element problem. A more general, but not as efficient, approach would be to extend to three-
dimensions the two-dimensional adaptive algorithm described in [14]. In this earlier work,
the multipole algorithm is made adaptive by breaking up the problem domain nonuniformly,
in which case lowest level squares are of different sizes, where the size is chosen so that each
lowest-level square has roughly the same number of panels.

To see why an adaptive algorithm based on a nonuniform partitioning of the problem
domain can be inefficient, consider computing the potential at the center of the panel labeled
A in Figure 4a. For this example, a two-dimensional square problem domain has been
recursively quartered, the recursion being halted when a square had no more than one panel.
To compute the potential at the center of panel A using a multipole algorithm based on this
nonuniform partitioning requires: nine direct potential evaluations, for the nine panels in
nearest-neighbor squares bordering the square containingA, and eleven multipole evaluations
for the eleven nonempty squares not bordering A. Alternatively, if a uniform partitioning is
used, as in Figure 4b, then it is easily seen that only five multipole evaluations are required.

Such an increase in computational cost can not occur with the adaptive algorithm given
above, as the following theorem states:

Theorem 1 The computational cost of the adaptive approach given in Algorithm 2 is never

greater than that of the corresponding nonadaptive algorithm.

The proof follows directly from the fact that the adaptive multipole algorithm, Algo-
rithm 2, evaluates the potential due to panel charges in a cube directly, rather than with a
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(a) (b)

Fig. 4. Partitionings used in Algorithm 2, (b), and by the adaptive algorithm of [14], (a).

multipole approximation, whenever the number of expansion coefficients would exceed the
number of panels.

It should be noted that the overhead cost of maintaining a uniform domain partitioning
has been ignored in this comparison. If the distribution of panels is very nonuniform, a
matching nonuniform partitioning, like the approach used in [14], will naturally generate
fewer lowest-level partitions, and hence reduce bookkeepping overhead. Careful data
organization can make this overhead negligible for typical capacitance calculation
problems. In the examples presented in Section VI, for which FASTCAP generates uniform
domain partitionings with as many as 250, 000 lowest-level cubes, the bookkeepping
overhead is never significant.

V. Preconditioning the Iterative Method

In general, the GMRES iterative method applied to solving (2) can be significantly acceler-
ated by preconditioning if there is an easily computed good approximation to the inverse of
P . We denote the approximation to P−1 by C̃, in which case preconditioning the GMRES
algorithm is equivalent to using GMRES to solve

PC̃x = p. (20)

for the unknown vector x, from which the charge density is computed by q = C̃x. Clearly, if
C̃ is precisely P−1, then (20) is trivial to solve, but then C̃ will be very expensive to compute.

5.1. A Simple Example

A good approximation to P−1 that is easily computed, and fits with the hierarchical mul-
tipole algorithm described previously, can be derived by exploiting the fact that P−1 is
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(a)

(b)

(c)

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3

Fig. 5. Simple panel systems with potential coefficient matrices P (7), (a), P (5), (b), and
P (3), (c). The parallel, 1m×1m panels are spaced 0.5m appart.

approximately the detailed capacitance matrix, by which we mean the n×n capacitance ma-
trix for the problem in which every panel or tile used to represent the conductor surfaces is
treated as an independent conductor. To see why this point of view leads to a preconditioner,
consider the 7 × 7 P matrix, denoted P (7), for the seven panel example in Figure 5a. The
fourth row of P (7), which is associated with the center panel in Figure 5a, can be computed
using the definition in (3) and is, in inverse-farads,

P (7)4,1 P (7)4,2 P (7)4,3 P (7)4,4 P (7)4,5 P (7)4,6 P (7)4,7
0.5785 0.8346 1.4261 3.1686 1.4261 0.8346 0.5785

(21)

where all the values have been multiplied by 10−10. The fourth row of P (7)−1 is, in picofarads,

P (7)−1
4,1 P (7)−1

4,2 P (7)−1
4,3 P (7)−1

4,4 P (7)−1
4,5 P (7)−1

4,6 P (7)−1
4,7

−1.3080 −1.5898 −15.4544 46.7864 −15.4544 −1.5898 −1.3080
(22)

From the definition in (3), the matrix elements P4,j must decay as |j − 4| grows, but
notice that the terms in P−1

4,j decay much faster as |j − 4| increases. Viewing P−1 as an
approximation to the detailed capacitance matrix makes clear that the very fast decay of
terms in P (7)−1 is just an example of classical electrostatic screening. The effect of screening
can also be seen by examining the row of P (5)−1 associated with the center panel in the five
panel problem in Figure 5b and in the row of P (3)−1 associated with the center panel in the
three panel problem in Figure 5c, which are, in picofarads,

P (5)−1
3,1 P (5)−1

3,2 P (5)−1
3,3 P (5)−1

3,4 P (5)−1
3,5

−2.1593 −15.5547 46.6990 −15.5547 −2.1593
(23)
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and
P (3)−1

2,1 P (3)−1
2,2 P (3)−1

2,3

−16.5499 46.4573 −16.5499
(24)

respectively. Comparing (22), (23) and (24) leads to the observation that a good estimate
for the fourth row of P (7)−1 can be derived from the third row of P (5)−1, which is a smaller

problem, and that even the second row of P (3)−1 provides a reasonable estimate. Specifically,
the estimate based on the five-panel problem is

C̃4,j =

{

P (5)−1
3,3+(j−4), |j − 4| < 3;

0, otherwise;
(25)

where C̃ denotes the estimate to P (7)−1.

5.2. Preconditioning Algorithm

The above example suggests an approach to estimating P−1 for a general configuration of
panels which fits with the hierarchical multipole algorithm in that the preconditioner C̃ can
be constructed and applied in a cube-by-cube fashion. The preconditioner is formed by
inverting a sequence of reduced P matrices, one associated with each finest-level cube, as in
Algorithm 3 below.

Algorithm 3: Forming C̃.
For each finest-level cube i = 1 to 8L {

Form P i, the potential coefficient matrix for the
reduced problem considering only the panels contained
in cube i and cube i’s neighbors.

Compute C̃ i = (P i)−1.
For each panel k in cube i or cube i’s neighbors {

if panel k is not in cube i {

delete row k from C̃ i.
}

}
}

Note that C̃ i is not a square matrix and that

8L
∑

i=1

(# rows in C̃ i) = n (26)

where again n is the total number of panels. By comparing Algorithm 3 with Algorithm 2,
it is clear that P i uses only those elements of the full P matrix which are already required
in Algorithm 2, and therefore the computational cost in computing the preconditioner is
only in inverting small P i matrices. Then computing the product PC̃xk, which would be
used in a GMRES algorithm applied to solving (20), is accomplished in two steps. First, the
preconditioner is applied to form qk = C̃xk using Algorithm 4 below. Then, Pqk is computed
using Algorithm 2 in the previous section.
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Algorithm 4: Forming q = C̃x.
For each finest-level cube i = 1 to 8L {

For each panel j in finest-level cube i {
For each panel k in cube i or its neighbors {

Add C̃ i
jkxk to qj .

}
}

}

VI. Experimental Results

In this section, results from computational experiments are presented to demonstrate the
efficiency and accuracy of the preconditioned, adaptive, multipole-accelerated (PAMA) 3-D
capacitance extraction algorithm described above. In particular, the program FASTCAP,
which can use both direct factorization and multipole-accelerated techniques, has been devel-
oped and incorporated into MIT’s MEMCAD (Micro-Electrical-Mechanical Computer-Aided
Design) system [9]. The structures described below were created with the solid modeling
program in the MEMCAD system, PATRAN, or by computer program, and all capaci-
tance calculations were performed using FASTCAP. The multipole-accelerated algorithms
in FASTCAP use, by default, second-order multipole expansions and a GMRES convergence
tolerance (see Algorithm 1) of 0.01.

Fig. 6. The sphere1 discretization of the unit sphere.

To demonstrate absolute accuracy, the FASTCAP program was used to compute the
capacitance of a unit sphere, discretized as in Figure 6, and a unit cube, discretized as in
Figure 7. In Table I, the capacitances computed using the PAMA algorithm are compared
with the capacitances computed using direct factorization of P in (2) (Direct), and with
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Fig. 7. The cube1 discretization of the unit cube.

Method Problem
Sphere1 Cube1

768 panels 150 panels
Direct 110.6 73.26
PAMA 110.5 73.28
Other 111† 73.5,73.4

TABLE I Capacitance values (in pF) illustrating FASTCAP’s accuracy. †By analytic calcu-
lation. ‡From [11] [15].

analytic results for the unit sphere and with reference results for the unit cube. As can be
seen from the table, the results using the PAMA algorithm are easily within one percent of
the analytic or reference results.

The PAMA algorithm is nearly as accurate as the direct factorization method even on
more complex problems, such as the 2×2 woven bus structure in Figure 8. The capacitances
computed using the two methods are compared in Table II, using coarse, medium, and fine
discretizations of the woven bus structure, also shown in Figure 8. Note that the coupling
capacitance C12 between conductors one and two, which is forty-times smaller than the self-
capacitance C11, is computed nearly as accurately with the PAMA algorithm as with direct
factorization.

The computational cost of using the FASTCAP program is roughly proportional to the
product of the number of conductors, m, and the number of panels n. This is experimentally
verified using a parameterized version of the woven bus structure in Figure 8, that is, the

16



Woven1

Woven2

Woven3

(a) (b)

�

4

3

2

1

Fig. 8. The 2 × 2 woven bus problem: bars have 1m×1m cross sections. The three dis-
cretizations are obtained by replacing each square face in (a) with the corresponding set of
panels in (b).

Method Problem
Woven1 Woven2 Woven3

1584 Panels 2816 Panels 4400 Panels
C11 C12 C11 C12 C11 C12

Direct 251.6 −6.353 253.2 −6.446 253.7 −6.467
PAMA 251.8 −6.246 253.3 −6.334 253.9 −6.377

TABLE II Capacitance values (in pF) illustrating FASTCAP’s accuracy for the complicated
geometry of Figure 8.
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Fig. 9. CPU time as a function of problem size times number of conductors, mn, for the
PAMA algorithm applied to woven buses of various sizes. The dashed line is the least-squares
best fit to the illustrated data points.
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Fig. 10. Two signal lines passing through conducting planes; via centers are 2mm appart.

1000µm
1000µm

1µm

Fig. 11. A schematic illustration of the diaphragm problem. The two plates are 0.02µm
appart at the center.

structure is extented to make a 3×3 bus, a 4×4 bus and a 5×5 bus, with surfaces discretized
as depicted in the Woven1 example of Figure 8. In Figure 9, the CPU times for computing
the capacitances of the woven bus structures are plotted as a function of mn, and as the
graph clearly demonstrates the computation time does grow linearly.

To demonstrate the effectiveness of various aspects of the PAMA algorithm on a range of
problems, in Table III the CPU times required to compute the capacitances of six different
examples using four different methods are given. The examples Cube2 and Sphere2 are finer
discretizations of the unit cube and sphere in Figures 6 and 7; the examples 2 × 2 Woven
Bus and 5 × 5 Woven Bus are described above; the example Via, shown in Figure 10, models
a pair of connections between integrated circuit pins and a chip-carrier; and the example
Diaphragm, shown in Figure 11, is a model for a microsensor [16].

From Table III, it can be seen that using the adaptive multipole algorithm (AMA) typ-

19



ically reduces the computation time by a factor of two over using the multipole algorithm
(MA) alone, and that using the preconditioner can reduce the computation time as much as
a factor of three. Also, note that the PAMA algorithm is more than two orders of magnitude
faster than direct methods for the larger problems.

Fig. 12. The GMRES residual norms for the linear system solution corresponding to the
Diaphragm problem (Figure 11) with the top conductor at unit potential. As is evident here,
the AMA method generally makes the iterate calculation more efficient, while the PAMA
algorithm leads to fewer iterations.

The reduction in execution time afforded by the adaptive algorithm is due to increased
efficiency in calculating each iterative loop iteration, rather than in a reduction the total
number of iterations. The convergence plot in Figure 12 correspond to one of the linear
system solutions associated with the Diaphragm problem and is representative of the general
case. As is evident in the figure, the AMA algorithm generally computes nearly identical
iterates to those calculated by the MA method but is faster, as reported in Table III. In
contrast, the preconditioner leads to shorter computation time by reducing the total number
of iterations rather than making each iterate calculation less costly. In fact one PAMA iterate
requires more computation than an AMA iterate, but the difference is more than offset by
the reduction in total number of iterations, as is certainly the case in Figure 12.
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Method Cube2 Sphere2 2x2 Woven Bus Via Diaphragm 5x5 Woven Bus
294 Panels 1200 Panels 4400 Panels 6185 Panels 7488 Panels 9630 Panels

Direct 0.11 3.2 185 (490) (890) (1920)
MA 0.06 0.3 6.0 11 8.7 42
AMA 0.05 0.2 3.3 4.7 5.9 23
PAMA 0.05 0.2 2.3 3.2 1.3 11

TABLE III CPU times in minutes on an IBM RS6000/540, times in parentheses are extrap-
olated.

VII. Conclusions and Acknowledgements

In this paper several new algorithms were presented that make multipole-accelerated three-
dimensional capacitance calculation applicable and computationally efficient for almost any
geometry of conductors in a homogeneous dielectric medium. In particular, a new adaptive
multipole algorithm was described, along with a strategy for accelerating iterative algorithm
convergence by exploiting electrostatic screening. Results from using FASTCAP, our pro-
gram based on these techniques, to compute the capacitance of a wide range of examples
were given, and they demonstrated that the new algorithms are nearly as accurate as the
more standard direct factorization approach, and are more than two orders of magnitude
faster for large examples. Current research in progress is in extending the above approach
to solving problems with piecewise-constant dielectrics and ground planes.

The authors would like to thank Prof. Senturia for many valuable discussions on various
approaches to preconditioning, and for his and Brian Johnson’s help in linking FASTCAP
with the M.I.T. MEMCAD system. The authors would also like to thank David Ling and
Albert Ruehli of the I.B.M. T. J. Watson Research Center for their helpful suggestions
about capacitance calculations. In addition, we would like to acknowledge the help of the
members of the M.I.T. custom integrated circuits group. Finally, we are indebted to several
anonymous reviewers for their careful evaluations of an earlier draft of this paper.
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